翻訳と辞書
Words near each other
・ Prokaryotic riboflavin biosynthesis protein
・ Prokaryotic transcription
・ Prokaryotic translation
・ Prokaryotic ubiquitin-like protein
・ Prokash Karmakar
・ Prokeimenon
・ ProKennex
・ Prokhladnaya (river)
・ Prokhladnensky District
・ Prokhladny
・ Prokhladny, Kabardino-Balkar Republic
・ Prokhor
・ Prokhor Dubasov
・ Prokhor of Gorodets
・ Prokhorov
Prokhorov's theorem
・ Prokhorovka
・ Prokhorovka, Belgorod Oblast
・ Prokhorovsky
・ Prokhorovsky District
・ Prokinetic agent
・ Prokineticin
・ Prokineticin receptor
・ Prokineticin receptor 1
・ Prokineticin receptor 2
・ Prokletije
・ Prokocice
・ Prokofi Akinfiyevich Demidov
・ Prokofiev (crater)
・ Prokofiev (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Prokhorov's theorem : ウィキペディア英語版
Prokhorov's theorem
In measure theory Prokhorov’s theorem relates tightness of measures to relative compactness (and hence weak convergence) in the space of probability measures. It is credited to the Soviet mathematician Yuri Vasilyevich Prokhorov, who considered probability measures on complete separable metric spaces. The term "Prokhorov’s theorem" is also applied to later generalizations to either the direct or the inverse statements.
==Statement of the theorem==
Let (S, \rho) be a separable metric space.
Let \mathcal(S) denote the collection of all probability measures defined on S (with its Borel σ-algebra).
Theorem.
# A collection K\subset \mathcal(S) of probability measures is tight if and only if the closure of K is sequentially compact in the space \mathcal(S) equipped with the topology of weak convergence.
# The space \mathcal(S) with the topology of weak convergence is metrizable.
# Suppose that in addition, (S,\rho) is a complete metric space (so that (S,\rho) is a Polish space). There is a complete metric d_0 on \mathcal(S) equivalent to the topology of weak convergence; moreover, K\subset \mathcal(S) is tight if and only if the closure of K in (\mathcal(S),d_0) is compact.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Prokhorov's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.